b-tagging Using hbb and hdd Samples

K. Jyothsna Rani

Plan of the Talk

- Introduction
- Simulation framework
- Event kinematics
- b-jet tagging using H-disks
- Higgs mass resolution
- Summary

Introduction

- In SM Higgs boson coupling to b is rather weak $\sim m_b/v$.
- In SUSY models the b-quark coupling to Higgs bosons is enhanced by ~tanb.
- Thus φ(=h,H,A)bb associated production cross-section expected to be large.
- Tevatron is a best place to study this process.

Production of \$\phi bb\$

- Leading Order Feynman
 Diagrams for the φbb production.
- Final states are characterized by two central b-jets(from Higgs) and at least one forward jet.

Simulation Framework

- Simulation chain is done within mc_runjob framework(almost).
- Simulation chain consists of Gen → D0G* → Sim → Reco → Reco_analyze.
- Non standard features.
 - Have global tracks with H-disks ON/OFF.
 - Introduce several cone sizes in jet reconstruction package.

MC Samples

- Available event samples.
 - bh(→bb) 5K events for b-jet tagging performance.
 - ddh(→dd) 5K events for light quark jet mistag rate estimations.
 - No pile-up of minimum bias events superimposed.
 - Input Higgs mass = 120GeV.
 - $-\tan\beta = 1$ and R(cone) = 0.5.

Signal Kinematics(1)

P_⊤ of Higgs

10

P_T distributions for

- •Higgs
- •least energetic b's

Signal Kinematics(2)

η distributions for

- •Higgs
- most and
- •least energetic b's in gg→hbb process

Signal Kinematics(3)

• η vs E_T correlations for MC b-jets

(Previous distributions were for MC).

Signal Kinematics (4)

- Results for full detector simulation
- Jets are reconstructed with RunII cone algorithm
- R(cone) = 0.5
- ET > 8 GeV
- No jet energy correction

Signal Kinematics (5)

\boldsymbol{E}_T and $\boldsymbol{\eta}$ distributions of 4 leading jets

Jets are not energetic

Signal Kinematics (6)

η vs E_T correlation of 4 leading jets

b-jet Tagging(1)

Jet tagging algorithm based on Secondary Vertex(SV) reconstruction using Kalman Filter

- Decay Length Sig. $L/\sigma > 3$
- Jet is SV-tagged if $\Delta R(SV,jet) < 0.3$

b-jet Tagging(2)

E_T and η Distributions for

b-tagged jet and b-jet

Efficiency = b-tagged jets / all b-jets

b-jet Tagging(3)

E_T and η dependence of tagging efficiency

- Compare default gtr with H-disks ON
- •With H-disks in gtr tagging efficiency has improved especially in forward regions.

Mis-tagging Rate

- Used sample ddh(→dd) 5K events
- Kinematics is like 4b case
- Pass through same analysis chain as 4b's

• Mis-tag rates look similar with/without H-disks.

Higgs Mass Resolution(1)

• bb-jets(from Higgs) invariant mass $\label{eq:total_total_total_total} distribution for jet \ E_T > 30 GeV \ in \ |\eta| < 2$

Higgs Mass Resolution(2)

- Mass resolution vs Cone size
- No corrections applied

Smaller cone size is advantageous in terms of di-jet mass resolution.

Summary

- φbb production has been looked at with detailed simulations.
- Possibility to improve btagging in forward region using H-disks has been investigated.
- Higgs mass resolution as a function of several cone sizes of jet reconstruction algorithm has been studied.